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Abstract

In this study, the formation of water surface profi les in subcritical and supercritical branches 
of alternate depths has been investigated in the presence of both an upward and downward 
obstacle, delta Z (∆z). The observations yielded an interesting result in the presence of both 
upward and downward obstacles in subcritical fl ow conditions. In subcritical fl ow conditions, 
the behavior is unusual, with an upward ∆Z. The water surface profi le drops down instead 
of moving upward. Conversely, in the presence of a downward ∆Z, the water surface profi le 
does not drop; instead, it rises according to the height of ∆Z. The reason for this strange 
behavior in the water surface profi le is presented mathematically as well as graphically, based 
on the energy depth diagram in detail.
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Introduction

Recently, a variety of energy dissipation structures have 
been used to reduce the destructive kinetic energy of water 
ϐlow and prevent damage to downstream hydraulic facilities. 
In open channels, one of the most common structures used 
to dissipate energy is the vertical drop. A vertical drop alone 
cannot completely dissipate the kinetic energy of the ϐlow, 
and this excess energy can cause downstream damage [1]. 
A hydraulic jump model was developed for a type III stilling 
basin to investigate the inϐluence of a stepped chute on 
hydraulic jumps. The result showed that type III basins are 
adequate with a stepped chute [2], Figure 1. Below shows a 
Type III hydraulic jump stilling basin with a stepped chute. 
A hydraulic jump is deϐined as the sudden transition from a 
supercritical ϐlow to a subcritical condition in a short distance. 
Furthermore, the hydraulic jump is a phenomenon where 
the water surface moves upwards at critical depth as kinetic 
energy is converted to potential energy. Hydraulic jumps are 
usually used to dissipate excessive energy downstream of 
the hydraulic structures [3]. A ϐlow over labyrinth weirs with 
semicircular and sinusoidal conϐigurations in a rectangular 
channel under a wide range of ϐlow discharges has been 

conducted. Labyrinth weirs have nearly the same discharge 
coefϐicient as broad-crested weirs, and the ϐlow discharge 
exceeded the linear weir’s efϐiciency by ∼30%. Additionally, 
reliable equations for estimating the discharge coefϐicient [4]. 

Characteristic of free and submerged jump has been 
investigated by the ϐlow 3d model [5] (Figure 3). Below shows 
a hydraulic jump occurring under a thin opening under a 
rectangular sluice gate, including an estimate of the hydraulic 
jump length [6-8] (Figure 4). shows a hydraulic jump with 
its geometrical parameters for subcritical and supercritical 

Figure 1: Type III hydraulic jump stilling basin.
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into a shallow canal from super-critical to subcritical. This 
transition causes energy dissipation, which deϐines the 
application of hydraulic jumps in engineering [17]. 

Hydraulic jumps are classiϐied based on their Froude 
number, starting from a numeric value of one, which 
represents undular jumps, up to a Froude number of 
9 and higher, which stands for a strong jump. Undular, 
weak, and oscillating jumps are shown in Figure 5. Below. 
Undular jump categorized by smooth downstream and 
Froude number between 1 and 1.7. The smoothness of 
the downstream water surface is due to a low energy 
dissipation rate. (Figure 5). (a) [18-20] Weak jump is 
pretty like an undular jump with a slight difference in 
Froude number. In this case Froude number is between 1.7 
and 2.5. Figure 5. (b) [21, 22] In an oscillating jump, there 
is turbulence at the downstream section of the ϐlow, and 
the Froude number is between 2.5 and 4.5. Figure 5. (c) 
[23-25] In a steady jump, turbulence is already conϐined, 
and the Froude number is high, between 4.5 and 9. Figure 
6. (a) [26-27] Froude number higher than 9, considered 
be strong jump, while the energy dissipation rate is very 
high, and the water surface proϐile has a lot of variations in 
terms of depth change. Figure 6. (b) [27, 28]. 

branches of ϐlow. A thin fast fast-ϐlowing ϐlow enters the 
control volume at the very beginning of the section, which 
represents the supercritical ϐlow condition. It is a rapid 
ϐlow with a Froude number higher than one, accompanied 
by lower depth in comparison to the other side [9-12]. 
Somewhere in the middle the hydraulic jump occurs, where 
the depths of ϐlow increases while its energy dissipates to 
a great extent and eventually it reaches to a tranquil ϐlow 
state, which has a lower velocity in comparison to the ϐlow 
before the jump and represents a subcritical ϐlow condition 
with higher for depth, lower velocity and a Froude number 
less than one [13-16]. A hydraulic jump is an abrupt change 
in the water depth accompanying the transition of the ϐlow 

 

Figure 2: Schematic of hydraulic jump. Hydraulic Jump and its 
Characteristics A schematic of a hydraulic jump is shown in Figure 2. 
Below.

 

Figure 3: The schematic view of the formed hydraulic jump over the 
rough bed.

 

Figure 4: Laboratory ϐlume for hydraulic jump + geometrical 
parameters.

 

Figure 5: Undular, Weak and Oscillating Jump.

 

Figure 6: Undular, Weak and Oscillating Jump.
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Supercritical Flow

In a supercritical ϐlow condition, the water surface 
proϐile moves upward due to an upward ∆Z accordingly. 
Figure 7(a) below shows a supercritical ϐlow with upward 
∆Z, which results in an upward jump in the water surface 
proϐile at the location of the obstacle. Likewise, in Figure 
7(b) a drops of water surface according to a downward ∆Z 
are observed.

Subcritical Flow

In subcritical ϐlow conditions, however, the water 
surface proϐile behaves differently in the presence of an 
upward and downward ∆Z. Figure 8(a) shows the unusual 
behavior of a subcritical ϐlow with an upward ∆Z, in which 
the water surface proϐile drops down instead of moving 
upward. Accordingly, in Figure 8(b), in the presence of a 
downward ∆Z instead of having a downward drop in water 
surface proϐile, it just rises according to the height of ∆Z. 
The reason for this strange behavior in the water surface 
proϐile is presented mathematically as well as graphically 
based on the energy depth diagram in Figures 9 and 10, 
respectively. In the  presence of an upward ∆Z, E2  is always 
smaller than E1. As it is shown in Figure 9 height of water 
before the upward ∆Z (y1) is larger than the height of water 
at the location of ∆z (y2+∆Z). y1 = y2 + ∆Z + plus Epsilon (Ɛ).  
In the sub-critical branch of ϐlow, you can see the horizontal 
distance of points 1 and 2 to the line of 45° from the vertical 
axis, respectively. By moving from point 1 to point 2, this 
distance is increasing by the amount of epsilon(Ɛ), which 
means there is a drop in water surface elevation at the 
location of ∆Z.

In the presence of a downward ∆Z, E2 is always larger 
than E1. As it is shown in Figure 10 height of water before 
the upward ∆Z (y1) is smaller than the height of water at the 
location of ∆z (y2+∆Z). y2 = y1 + ∆Z + plus Epsilon (Ɛ).  In the 
sub-critical branch of the ϐlow, you can see the horizontal 
distance of points 1 and 2 to the line of 45° from the vertical 
axis, respectively. By moving from point 1 to point 2, this 

 

Figure 7: Super-critical ϐlow in a hydraulic channel, with upward ∆Z(a) 
and downward ∆Z (b).

 

Figure 8: Sub-critical ϐlow in the hydraulic channel, with upward ∆Z(a) 
and downward ∆Z(b).

 

Figure 9: Energy-Depth Diagram in a sub-critical ϐlow in a hydraulic 
channel, with upward ∆Z. 

 

Figure 10: Energy-Depth Diagram in a sub-critical ϐlow in a hydraulic 
channel, with downward ∆Z.

distance is decreasing by the amount of epsilon(Ɛ), which 
means there is a rise in water surface elevation at the location 
of ∆Z.

Conclusion

In this study, supercritical and subcritical ϐlow conditions 
were investigated with the presence of upward and 
downward obstacles, respectively. The behavior of the water 
surface proϐile was compatible with our intuitive perception 
of vertically blocking and widening the ϐlume; however, in 
subcritical ϐlow conditions for both upward and downward 
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scenarios, the behavior of the water surface proϐile was 
surprising. The logic behind a subcritical ϐlow with an 
upward ∆Z in which the water surface proϐile drops down 
instead of moving upward has been explained. Likewise, 
in the presence of a downward ∆Z instead of having a 
downward drop in water surface proϐile, it just rises 
according to the height of ∆Z.  The two points of subcritical 
and supercritical branches of ϐlow have the same 
momentum cause they both consider alternate depths for 
upstream and downstream of a hydraulic jump. Figure 11 
below shows water momentum vs. Water depth.
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