ABSTRACT

Background: Worldwide, an increasing number of children (1 out of 10 in some countries) are born to pregnancies achieved by applying assisted reproductive technology (ART).

It has been assumed that these pregnancies have a higher prevalence of both obstetric and neonatal complications compared to gestations achieved after natural reproduction (NR).

Objective: The purpose of this study was to evaluate and compare maternal obstetrical and perinatal complications between pregnancies achieved after ART and NP, in a setting in which a strict policy of single embryo transfer is followed.

Study design: This is an observational comparative study to assess obstetrical and perinatal outcomes involving 583 patients who achieved an ongoing pregnancy after ART, by using either autologous (AO) (363 women) or donated oocytes (DO) (220 women) at a University associated Assisted Reproduction Center, between January, 2016 and December, 2018.

Age of women at delivery, gestational length, type of delivery, birthweight of newborns and perinatal complications were registered and compared to 273 deliveries of pregnant women after NP clinically followed at our center.

Results: Due to strict single embryo transfer policy the rate of multiple pregnancies after ART (1.38%) was comparable to that of gestations after NR (1.10%) (OR: 1.25; 95% CI 0.33-4.76).

In our series, the percentage of women aged 35 or older (AMA) and 40 and older (VAMA), was similar between women in the NR group (59.34% and 17.22%) and those of the ART with autologous oocytes (AO) group (57.85% and 13.77%) (p=0.759 and p=0.234). Age of women was significantly higher in women pregnant after ART-DO procedures.

The rate of preterm deliveries was 6.59%, 3.58% and 12.27% for NR, ART-AO and ART-DO respectively. Birthweight of neonates after ART-AO was significantly higher than after NR (p=0.000) and after ART-DO (p=0.000).

Copyright: © 2020 Barrenetxea G, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Pregnancy induced hypertension was more frequently diagnosed among ART-DO pregnancies. No differences were seen in other analyzed obstetrical and neonatal complications.

Cesarean section rate was significantly higher among AR pregnancies, especially among ART-DO gestations. The probability of delivering by CSs is as much as twice (and even triple if we consider pregnancies achieved through ART-DO).

Conclusion: The higher obstetrical and neonatal complications traditionally associated with pregnancies achieved after ART is a consequence of factors other than the procedure itself. Whereas some factors (age of women) depend on the different social profile, others (such as the indiscriminate transfers of more than one embryo) should move us to a deep reflection and self-criticism.

Furthermore, infants born after ART have comparable or better perinatal outcome than those born after NR once multiple pregnancies are avoided by following a policy and, thus a rational, use of single embryo transfer. This is reassuring regarding the use of ART but, at the same time, reinforces the convenience of earlier pregnancies.

Keywords: ART, Natural pregnancies, NP, Multiple pregnancies, assisted reproduction, advanced maternal age, cesarean section, placental disorders, pregnancy induced hypertension, low birthweight, prematurity.

Introduction
Over the course of the last decades, a substantial number of children have been conceived after applying assisted reproductive technology (ART) procedures [1, 2]. It has been generally assumed that pregnancies achieved after ART have a higher prevalence of obstetric and perinatal complications such as prematurity and low birthweight neonates and a higher prevalence of cesarean sections at delivery [3-7]. Such perinatal complications could be a direct consequence of the higher rate of multiple pregnancies. Twin pregnancies have a threefold greater perinatal death rate overall compared to singleton pregnancies [8, 9].

However, other factors, such as advanced maternal age (over 35 years of age, AMA), could be related to these complications. During the last years, a steadily increase of maternal age has been observed worldwide [10-13]. In Spain, more than 37% and 8% of deliveries occurred in the AMA and very advanced age (over 40 years of age, VAMA) groups respectively [14].

The purpose of this study was to evaluate and compare maternal obstetrical complications and the risk of prematurity, birthweight of neonates, morbidity and mortality and type of delivery between pregnancies achieved after ART and NP.

Materials and Methods
The present study is an observational analysis involving 583 patients who achieved an ongoing pregnancy after ART in a University associated Assisted Reproduction Center, Reproduction Bilbao between January 2016 and December 2018. Gestational age at delivery, type of delivery, birthweight of newborns and perinatal complications were registered and compared to 273 deliveries of pregnant women after NP clinically followed at our center. Data collection was approved by the institutional review board of the center.

Age of women, type of ART procedure, the use of either autologous or donated eggs, gestational age at delivery and type of delivery were assessed. Also, the hospitals where deliveries were attended, belonging either to public or private network, were evaluated. Some variables were analyzed both as continuous and categorical variables. In this setting maternal age at delivery of women was assessed as a continuous variable and as categorical defining women of AMA (35 years and older) and VAMA (40 years and older). Gestational age at delivery was also categorized and premature deliveries (less than 37 weeks of gestation) and very premature deliveries (less than 33 weeks of gestation) were defined.

Birth and infant outcomes included maternal pregnancy complications (gestational diabetes and pregnancy hypertension), placental complications (excessive bleeding, placenta previa, and abruptio placenta), mode of delivery (vaginal, cesarean), and infant sex were assessed. Stillbirth (≥ 22 weeks of gestation) was also included into adverse fetal/neonatal outcomes.

Statistical analysis
Statistical comparisons of clinical parameters between ART and NP deliveries were performed by applying the Student’s and ANOVA tests for quantitative continuous variables and chi-squared test (χ^2) for categorical variables. Odds ratios (OR) were also calculated defining the likelihood that the assessed events (premature deliveries, AMA, VAMA) occurred more frequently among ART pregnancies. The threshold for statistical significance was set to $p<0.05$. SPSS 25.0 (IBM Corporation, Chicago, IL) was used for analyzing the data.

Results
Baseline maternal characteristics of the different assessed groups are presented in (Table 1a). Mean age of pregnant women after NR

| Table 1a: Age of women at delivery depending on the type of reproduction. Description and statistical analysis. |
|-----------------|---|---|---|---|
| | n | Mean | SD | SEM |
| Natural reproduction (NR) | 273 | 35.60 | 3.85 | 0.23 |
| Assisted Reproduction (AR) | 583 | 37.51 | 4.44 | 0.18 |
| AR-autologous oocytes | 363 | 35.53 | 3.47 | 0.18 |
| AR-donated oocytes | 220 | 40.83 | 3.86 | 0.26 |
| SEM: Standard deviation of the mean |
| **t**: Pearson’s t |
| **p**: probability |

<table>
<thead>
<tr>
<th>t*</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR vs. NR</td>
<td>6.110</td>
</tr>
<tr>
<td>AR-AO vs. NR</td>
<td>-0.210</td>
</tr>
<tr>
<td>AR-DO vs. NR</td>
<td>14.980</td>
</tr>
<tr>
<td>AR-DO VS. AR-AO</td>
<td>17.180</td>
</tr>
</tbody>
</table>

Bold: statistically significant
was significantly lower than women who achieved a gestation after AR. However, the advanced age of women in this AR setting was due mainly to those who followed a treatment by using donated oocytes. Moreover, if we analyze the percentage of women aged 35 or older (AMA) and those aged 40 and older (VAMA), it is worthy to observe that there were no differences between women in the NR group and those assigned to the IVF autologous group (pregnancy achieved after an IVF procedure by using own oocytes) (Table 1b).

One of the concerns regarding perinatal complications among gestations achieved after AR procedures is the high percentage of multiple pregnancies. During the study period (January, 2016 - December, 2018) we followed a strict single embryo transfer (sET) policy. Furthermore, in 2017 we decided to perform only sET. Therefore, the rate of multiple pregnancies after AR was low and comparable to that of gestations after NR (Table 2).

The mean gestational age at delivery was 39.31±0.14 weeks (mean±standard error of the mean) for NR, 39.49±0.10 weeks for AR, 39.90±0.10 for IVF with autologous oocytes and 38.82±0.21 weeks for procedures in which donated eggs were used. The statistical analysis of the differences is presented in (Table 3).

(Table 4) shows the weeks of gestation at delivery depending on the different analyzed reproduction groups. The rate of preterm deliveries (<37 weeks) among IVF pregnancies with autologous oocytes was inferior to the frequency among NR gestations. Overall, the risk of a preterm delivery was higher among pregnancies achieved with donated oocytes compared to NR (twice) and IVF with own oocytes (almost 4 times).

Birthweights of newborns are presented in (Table 5). Overall, the weight of newborns after AR procedures (including 1st and 2nd siblings) was not different to the newborns delivered after a NR pregnancy. However, after IVF performed with own (autologous) oocytes the birthweight of neonates was significantly higher than those delivered after NR (p=0.000) and those after procedures with donated oocytes (p=0.000). Furthermore, the birthweight of newborns after using donated eggs was also inferior to the corresponding figure after NR pregnancies (p=0.014). Regarding newborns weighing less than 1000 g. (Table 6) there were no differences between NR and AR.

Obstetrical complications such as pregnancy induced hypertension (PIH), placental disorders (including abruptio and placenta previa), premature rupture of membranes (PROM) and intrauterine growth retardation (IUGR) are presented in (Table 7). Also, neonatal complications including admission to Neonatal Intensive Care Unit (NICU) and fetal malformations are showed in the same table. There were 4 stillbirths (2 in pregnancies achieved after IVF with autologous oocytes and 2 in procedures in which donated oocytes were used).

Table 1b: Age of women at delivery categorized as AMA and VAMA.

<table>
<thead>
<tr>
<th>Age Category</th>
<th><35 YEARS</th>
<th>35-39 YEARS</th>
<th>>39 YEARS</th>
<th>Total</th>
<th>AMA</th>
<th>VAMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural reproduction (NR)</td>
<td>111</td>
<td>115</td>
<td>47</td>
<td>273</td>
<td>59.34%</td>
<td>17.22%</td>
</tr>
<tr>
<td>Assisted Reproduction (AR)</td>
<td>170</td>
<td>212</td>
<td>201</td>
<td>583</td>
<td>70.84%</td>
<td>34.48%</td>
</tr>
<tr>
<td>AR-autologous oocytes</td>
<td>153</td>
<td>160</td>
<td>50</td>
<td>363</td>
<td>57.85%</td>
<td>13.77%</td>
</tr>
<tr>
<td>AR-donated oocytes</td>
<td>17</td>
<td>52</td>
<td>151</td>
<td>220</td>
<td>92.27%</td>
<td>68.64%</td>
</tr>
</tbody>
</table>

AMA: advanced maternal age (35 years and older)
VAMA: very advanced maternal age (40 years and older).
Bold: statistically significant

Table 2: Frequency of multiple deliveries according to the type of reproduction.

<table>
<thead>
<tr>
<th>MUTIPLE PREGNANCIES</th>
<th>n</th>
<th>Total</th>
<th>%</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural reproduction (NR)</td>
<td>3</td>
<td>273</td>
<td>1.10%</td>
<td>1.00</td>
</tr>
<tr>
<td>Assisted Reproduction (AR)</td>
<td>8</td>
<td>583</td>
<td>1.37%</td>
<td>1.25 (0.33-4.76)</td>
</tr>
<tr>
<td>AR-autologous oocytes</td>
<td>5</td>
<td>363</td>
<td>1.38%</td>
<td>1.26 (0.30-5.11)</td>
</tr>
<tr>
<td>AR-donated oocytes</td>
<td>3</td>
<td>220</td>
<td>1.36%</td>
<td>1.24 (0.25-6.23)</td>
</tr>
</tbody>
</table>

Table 3: Gestational age at delivery depending on type of reproduction. Description and statistical analysis.

<table>
<thead>
<tr>
<th>Mean</th>
<th>SD</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural reproduction (NR)</td>
<td>39.31</td>
<td>2.24</td>
</tr>
<tr>
<td>Assisted Reproduction (AR)</td>
<td>39.49</td>
<td>2.45</td>
</tr>
<tr>
<td>AR-autologous oocytes</td>
<td>39.90</td>
<td>1.86</td>
</tr>
<tr>
<td>AR-donated oocytes</td>
<td>38.82</td>
<td>3.10</td>
</tr>
</tbody>
</table>

SD: Standard deviation
SEM: Standard error of means

<table>
<thead>
<tr>
<th>t*</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR vs. NR</td>
<td>1.030</td>
</tr>
<tr>
<td>AR-AO vs. NR</td>
<td>3.620</td>
</tr>
<tr>
<td>AR-DO vs. NR</td>
<td>-2.030</td>
</tr>
<tr>
<td>AR-DO VS. AR AO</td>
<td>-5.260</td>
</tr>
</tbody>
</table>

Bold: statistically significant
t*: Pearson’s t

Obstetrical complications such as pregnancy induced hypertension (PIH), placental disorders (including abruptio and placenta previa), premature rupture of membranes (PROM) and intrauterine growth retardation (IUGR) are presented in (Table 7). Also, neonatal complications including admission to Neonatal Intensive Care Unit (NICU) and fetal malformations are showed in the same table. There were 4 stillbirths (2 in pregnancies achieved after IVF with autologous oocytes and 2 in procedures in which donated oocytes were used).
oocytes were required). No antepartum fetal demises were diagnosed among NR gestations. Besides fetal death, only PIH was more often diagnosed among AR pregnancies than NR gestations (Table 7).

Concerning the type of delivery (vaginal delivery vs. cesarean section), the frequency of CS was significantly higher among pregnancies achieved after AR, both IVF with own oocytes and by using donated eggs (Table 8). The probability (odds) of delivering by CS is as much as twice (and even triple if we consider pregnancies...

Discussion

In this study we compared both, maternal obstetrical complications, and neonatal outcomes of newborns between pregnancies achieved after ART procedures and NR.

Newborns after ART procedures are increasing accounting for 9% of all births in Spain in 2017 [15], a proportion that has doubled since 2010. Traditionally, pregnancies achieved by ART have been associated with a higher incidence of both maternal and neonatal complications. An unresolved issue is how much of the risk is due to infertility itself and underlying factors associated to infertility or the ART procedures used to achieve a gestation [16-19].

One of the key factors regarding perinatal outcomes of pregnancies is the age of women. In Spain, mean maternal age at first delivery has risen from 25.2 years in 1975 to 32.2 years in 2018 [13] through 30.7 in 2016 [12]. In 2018, 37.65% of deliveries were among mothers above 35 years and 7.79% over 40 years [12, 13]. Different factors such as difficulties in conciliating, a delayed economic independence present in western countries are the responsible of the delayed motherhood.

Pregnancy complications such as placental disorders, gestational diabetes, pregnancy induced hypertension and intrauterine growth retardation are more common in older pregnant women [20, 21]. In our series, women pregnant after ART were older than those who achieved a pregnancy by NR, but the difference was based on those who achieved a pregnancy by using donated eggs. Moreover, there were no differences in age comparing women pregnant after IVF with autologous oocytes and those pregnant after NR.

One of the sources of perinatal complications is the age of women. In Spain, mean maternal age at first delivery has risen from 25.2 years in 1975 to 32.2 years in 2018 [13] through 30.7 in 2016 [12]. In 2018, 37.65% of deliveries were among mothers above 35 years and 7.79% over 40 years [12, 13]. Different factors such as difficulties in conciliating, a delayed economic independence present in western countries are the responsible of the delayed motherhood.

Pregnancy complications such as placental disorders, gestational diabetes, pregnancy induced hypertension and intrauterine growth retardation are more common in older pregnant women [20, 21]. In our series, women pregnant after ART were older than those who achieved a pregnancy by NR, but the difference was based on those who achieved a pregnancy by using donated eggs. Moreover, there were no differences in age comparing women pregnant after IVF with autologous oocytes and those pregnant after NR.

One of the sources of perinatal complications is the age of women. In Spain, mean maternal age at first delivery has risen from 25.2 years in 1975 to 32.2 years in 2018 [13] through 30.7 in 2016 [12]. In 2018, 37.65% of deliveries were among mothers above 35 years and 7.79% over 40 years [12, 13]. Different factors such as difficulties in conciliating, a delayed economic independence present in western countries are the responsible of the delayed motherhood.

Pregnancy complications such as placental disorders, gestational diabetes, pregnancy induced hypertension and intrauterine growth retardation are more common in older pregnant women [20, 21]. In our series, women pregnant after ART were older than those who achieved a pregnancy by NR, but the difference was based on those who achieved a pregnancy by using donated eggs. Moreover, there were no differences in age comparing women pregnant after IVF with autologous oocytes and those pregnant after NR.

One of the sources of perinatal complications is the age of women. In Spain, mean maternal age at first delivery has risen from 25.2 years in 1975 to 32.2 years in 2018 [13] through 30.7 in 2016 [12]. In 2018, 37.65% of deliveries were among mothers above 35 years and 7.79% over 40 years [12, 13]. Different factors such as difficulties in conciliating, a delayed economic independence present in western countries are the responsible of the delayed motherhood.

Pregnancy complications such as placental disorders, gestational diabetes, pregnancy induced hypertension and intrauterine growth retardation are more common in older pregnant women [20, 21]. In our series, women pregnant after ART were older than those who achieved a pregnancy by NR, but the difference was based on those who achieved a pregnancy by using donated eggs. Moreover, there were no differences in age comparing women pregnant after IVF with autologous oocytes and those pregnant after NR.

One of the sources of perinatal complications is the age of women. In Spain, mean maternal age at first delivery has risen from 25.2 years in 1975 to 32.2 years in 2018 [13] through 30.7 in 2016 [12]. In 2018, 37.65% of deliveries were among mothers above 35 years and 7.79% over 40 years [12, 13]. Different factors such as difficulties in conciliating, a delayed economic independence present in western countries are the responsible of the delayed motherhood.

Pregnancy complications such as placental disorders, gestational diabetes, pregnancy induced hypertension and intrauterine growth retardation are more common in older pregnant women [20, 21]. In our series, women pregnant after ART were older than those who achieved a pregnancy by NR, but the difference was based on those who achieved a pregnancy by using donated eggs. Moreover, there were no differences in age comparing women pregnant after IVF with autologous oocytes and those pregnant after NR.

One of the sources of perinatal complications is the age of women. In Spain, mean maternal age at first delivery has risen from 25.2 years in 1975 to 32.2 years in 2018 [13] through 30.7 in 2016 [12]. In 2018, 37.65% of deliveries were among mothers above 35 years and 7.79% over 40 years [12, 13]. Different factors such as difficulties in conciliating, a delayed economic independence present in western countries are the responsible of the delayed motherhood.

Pregnancy complications such as placental disorders, gestational diabetes, pregnancy induced hypertension and intrauterine growth retardation are more common in older pregnant women [20, 21]. In our series, women pregnant after ART were older than those who achieved a pregnancy by NR, but the difference was based on those who achieved a pregnancy by using donated eggs. Moreover, there were no differences in age comparing women pregnant after IVF with autologous oocytes and those pregnant after NR.

One of the sources of perinatal complications is the age of women. In Spain, mean maternal age at first delivery has risen from 25.2 years in 1975 to 32.2 years in 2018 [13] through 30.7 in 2016 [12]. In 2018, 37.65% of deliveries were among mothers above 35 years and 7.79% over 40 years [12, 13]. Different factors such as difficulties in conciliating, a delayed economic independence present in western countries are the responsible of the delayed motherhood.

Pregnancy complications such as placental disorders, gestational diabetes, pregnancy induced hypertension and intrauterine growth retardation are more common in older pregnant women [20, 21]. In our series, women pregnant after ART were older than those who achieved a pregnancy by NR, but the difference was based on those who achieved a pregnancy by using donated eggs. Moreover, there were no differences in age comparing women pregnant after IVF with autologous oocytes and those pregnant after NR.

One of the sources of perinatal complications is the age of women. In Spain, mean maternal age at first delivery has risen from 25.2 years in 1975 to 32.2 years in 2018 [13] through 30.7 in 2016 [12]. In 2018, 37.65% of deliveries were among mothers above 35 years and 7.79% over 40 years [12, 13]. Different factors such as difficulties in conciliating, a delayed economic independence present in western countries are the responsible of the delayed motherhood.

Pregnancy complications such as placental disorders, gestational diabetes, pregnancy induced hypertension and intrauterine growth retardation are more common in older pregnant women [20, 21]. In our series, women pregnant after ART were older than those who achieved a pregnancy by NR, but the difference was based on those who achieved a pregnancy by using donated eggs. Moreover, there were no differences in age comparing women pregnant after IVF with autologous oocytes and those pregnant after NR.
those related with prematurity and low birth-weight) is the higher percentage of multiple pregnancies associated with ART. Whereas the multiple pregnancy rate after ART was 14% in Spain in 2017 [15], the figure for general population was 2% [13]. Multiple pregnancies are associated with significant maternal and perinatal complications [22].

The mean gestational age at delivery in a recently reported study were 37,6±2,2 (mean±SD), 35,2±2,7 and 32,1±3,1 week in singletons, twins, and triplets, respectively. The overall risk of preterm birth (less than 37 weeks of gestation) increased from 17,38% among singletons to 64,94% among twins and 98,41% among triplets [2]. The corresponding figures in Spain were 13,27%, 55,78% and 96,68% for singletons, twins, and triplets respectively [15].

Because of our strict policy of single embryo transfer (sET) multiple pregnancy rate in our series was low and completely comparable to the corresponding figure after NR. It was demonstrated that the sET policy resulted in a significant reduction in the multiple pregnancy rate from 24% to 12% in Belgium [22] without a negative impact on the cumulative pregnancy rate [23, 24].

Nevertheless, it has been reported that pregnancies utilizing ART have a higher prevalence of prematurity and low birthweight of newborns, even in singleton gestations compared to pregnancies after NR [7, 25, 26]. Our data show that infants both in the AR and the NR groups were born at similar gestational ages. Moreover, regarding IVF with autologous oocytes, duration or pregnancies was even higher compared to NR pregnancies. Therefore, no differences were found in the birthweight of infants after NR compared to those after IVF with autologous oocytes.

The association between prematurity and advanced maternal age remains controversial. Fuchs et al [10] found that advanced maternal age (40 years or more) was associated with an increased risk of preterm birth even after adjustment for confounders. In their series, the lowest risk of prematurity was found among mothers aged 30-34 years. Although it has been reported that prematurity among older women (40 years and above) is attributable to iatrogenic reasons, the analysis performed by Fuchs et al comparing spontaneous and iatrogenic prematurity does not confirm that hypothesis.

In a recent study, Nagata et al [27] reported an increased risk of maternal complications including pregnancy-induced-hypertension, placental disorders, need of blood transfusion and NICU admission even after controlling for maternal age and other potential confounders. Their findings were consistent with previous studies [28, 29].

Our results show a higher incidence of PIH among pregnancies achieved by using donated oocytes, although not statistically significant, placental disorders, including placenta previa and abruptio, and intrauterine growth retardation (IUGR) were more frequently diagnosed among ART pregnancies. Various studies tried to study the independent influence of advanced maternal age and ART on the appearance of PIH [30] but the evidence is still conflicting. In addition to being older (especially those who achieved a pregnancy by using donated oocytes) and of lower parity, sub fertile patients have a higher incidence of chronic disease (hypertension or diabetes for example) compared to their fertile counterparts, and are more likely to develop PIH, as well as placental complications [18]. Moreover, ART placenta has been documented to have altered morphology and gene expression, which may result in compromised development [31, 32].

In our series, there were no differences in admission to NICU. This lack of differences was probably secondary to the low multiple pregnancy rate. Previous studies have reported two-fold and three-fold increases in perinatal deaths among those born prior to 37 or 33 weeks of gestation underlying the importance multiple pregnancies and the major consequence, prematurity [2, 8].

No differences were seen regarding fetal malformations. Previous studies have shown that AR procedures increase the risk of congenital anomalies [33, 34]. Levi Setti et al. [19] reported higher rates of anomalies among babies born in Italy after ART compared with rates recorded by the European Surveillance of Congenital Anomalies (EUROCAT) but similar rates of anomalies when compared with infants conceived by infertile patients who did not undergo ART. Therefore, this increase has been attributed to infertility itself and underlying factors associated to infertility rather than ART [19, 33]. In accordance with our results, Heo et al [6] demonstrated that the incidence of major congenital anomalies in infants born as singletons after IVF was not higher than that in those born after NP after adjusting for confounding factors. As pointed out by the authors and in accordance with our recent results, the more generalized use of preimplantation genetic screening procedures may contribute to a lower incidence of congenital anomalies after ART procedures [35, 36].

Finally, the greater odds of cesarean delivery among pregnancies achieved after ART compared to NR gestations in our series (33,10% vs. 19,05%) (OR 1,49; 95% CI 1,49-2,98) are in accordance with previously reported studies [4, 5, 37, 38]. Furthermore, considering the lack of differences in multiple pregnancy rates among assessed groups, the higher CS rate may be associated with underlying medical and obstetrical factors, including age [38, 39]. Conversely, the rates of cesarean section among singleton pregnancies reported by some authors [6] were no different regarding ART and NR pregnancies.

Strengths and limitations

A main strength of this study is that it included patients followed during the same period of study offering an opportunity to compare pregnancy and neonatal outcomes between pregnancies after assisted or natural reproduction without the high multiple pregnancy rate usually associated to assisted reproduction. Moreover, data on obesity, smoking and alcohol use, gestational weight gain, accurate gestational measurements, and type of delivery of all gestations were available.

Limitations of the study include the low number (compared to general population in Spain) of patients. Moreover, being a private medical center, the pregnant women followed might not represent faithfully the general population.

Conclusion

The higher obstetrical and neonatal complications traditionally associated with pregnancies achieved after ART is a consequence of factors other than the procedure itself. Whereas some factors (age of women) depend on the different social profile, others (such as the indiscriminate transfers of more than one embryo) should move us to a deep reflection and self-criticism.
Furthermore, infants born after ART have comparable or better perinatal outcomes than those born after NR once multiple pregnancies are avoided by following a policy and, thus, a rational use, of single embryo transfer. This is reassuring regarding the use of ART but, at the same time, reinforces the convenience of earlier pregnancies.

References

